Solution mapping of T cell receptor docking footprints on peptide-MHC.
نویسندگان
چکیده
T cell receptor (TCR) recognition of peptide-MHC (pMHC) is central to the cellular immune response. A large database of TCR-pMHC structures is needed to reveal general structural principles, such as whether the repertoire of TCR/MHC docking modes is dictated by a "recognition code" between conserved elements of the TCR and MHC genes. Although approximately 17 cocrystal structures of unique TCR-pMHC complexes have been determined, cocrystallization of soluble TCR and pMHC remains a major technical obstacle in the field. Here we demonstrate a strategy, based on NMR chemical shift mapping, that permits rapid and reliable analysis of the solution footprint made by a TCR when binding onto the pMHC surface. We mapped the 2C TCR binding interaction with its allogeneic ligand H-2Ld-QL9 and identified a group of NMR-shifted residues that delineated a clear surface of the MHC that we defined as the TCR footprint. We subsequently found that the docking footprint described by NMR shifts was highly accurate compared with a recently determined high-resolution crystal structure of the same complex. The same NMR footprint analysis was done on a high-affinity mutant of the TCR. The current work serves as a foundation to explore the molecular dynamics of pMHC complexes and to rapidly determine the footprints of many Ld-specific TCRs.
منابع مشابه
Identification of the Docking Site for CD3 on the T Cell Receptor β Chain by Solution NMR.
The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αβ TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by pept...
متن کاملNpgrj_ni_1257 1114..1122
Unusually long major histocompatibility complex (MHC) class I–restricted epitopes are important in immunity, but their ‘bulged’ conformation represents a potential obstacle to ab T cell receptor (TCR)–MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B*3508 presenting a pe...
متن کاملHow the T Cell Receptor Sees Antigen—A Structural View
Structures of many of the cell surface receptor-ligand complexes mediating the interactions between T cells and target cells have been determined in the past ten years. While snapshots of T cell receptors bound to their peptide-MHC ligands appear to have defined a general interaction or "docking" solution, many of the most fundamental structural questions in antigen recognition lack detailed an...
متن کاملStructural and Biophysical Insights into the Role of CD4 and CD8 in T Cell Activation
T cell receptors (TCRs) recognize peptides presented by MHC molecules (pMHC) on an antigen-presenting cell (APC) to discriminate foreign from self-antigens and initiate adaptive immune responses. In addition, T cell activation generally requires binding of this same pMHC to a CD4 or CD8 co-receptor, resulting in assembly of a TCR-pMHC-CD4 or TCR-pMHC-CD8 complex and recruitment of Lck via its a...
متن کاملIdentification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes
Whether T-cell receptors (TCRs) recognize antigenic peptides bound to major histocompatability complex (MHC) molecules through common or distinct docking modes is currently uncertain. We report the crystal structure of a complex between the murine N15 TCR [1-4] and its peptide-MHC ligand, an octapeptide fragment representing amino acids 52-59 of the vesicular stomatitis virus nuclear capsid pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 32 شماره
صفحات -
تاریخ انتشار 2007